Some Amazing Properties of Spherical Nilpotent Orbits
نویسنده
چکیده
Let G be a simple algebraic group defined over an algebraically closed field k of characteristic zero. Write g for its Lie algebra. Let x ∈ g be a nilpotent element and G·x ⊂ g the corresponding nilpotent orbit. The maximal number m such that (adx) 6= 0 is called the height of x or of G·x, denoted ht(x). Recall that an irreducible G-variety X is called G-spherical if a Borel subgroup of G has an open orbit in X. It was shown in [Pa1] that G·x is G-spherical if and only if (adx) = 0. This means that the spherical nilpotent orbits are precisely the orbits of height 2 and 3. Unfortunately, whereas my proof for the orbits of height 2 and height ≥ 4 was completely general, the argument for the orbits of height 3 explicitly used their classification. In this paper, we give a proof of sphericity that does not rely on the classification of nilpotent orbits, see Theorem 3.3. We begin with some properties of invariants of symplectic representations. For instance, we prove that (1) if H ⊂ Sp(V ) is an irreducible representation without nonconstant invariants, then H = Sp(V ), and (2) if H has non-constant invariants, then it has an invariant of degree 4. Applying these results to nilpotent orbits, we prove that the centraliser zg(x) has a rather specific structure whenever ht(x) is odd. From this description, we deduce a conceptual proof of sphericity in case ht(x) = 3. As another application we compute the index of zg(x). It will be shown that ind zg(x) = rk g, if ht(x) = 3. This confirms Elashvili’s conjecture for such x (see [Pa5, Sect. 3] about this conjecture). In Section 4, we prove that if θ, the highest root of g, is fundamental, then g always has a specific orbit of height 3, which is denoted by O. This orbit satisfies several arithmetical relations. Namely, if g = ⊕
منابع مشابه
Rings of Regular Functions on Spherical Nilpotent Orbits for Complex Classical Groups
Let G be a classical group and let g be its Lie algebra. For a nilpotent element X E g, the ring R(Ox) of regular functions on the nilpotent orbit Ox is a Gmodule. In this thesis, we will decompose it into irreducible representations of G for some spherical nilpotent orbits. Thesis Supervisor: David Alexander Vogan Title: Professor of Mathematics
متن کاملSpherical Nilpotent Orbits and the Kostant-sekiguchi Correspondence
Let G be a connected, linear semisimple Lie group with Lie algebra g, and let KC → Aut(pC ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent KC -orbits in pC and the nilpotent G-orbits in g. We show that this correspondence associates each spherical nilpotent KC -orbi...
متن کاملClassification of Spherical Nilpotent Orbits in Complex Symmetric Space
Let G be the adjoint group of the simple real Lie algebra g , and let K C → Aut(p C ) be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent K C orbits in p C .
متن کاملNilpotent Orbits in Positive Characteristic
Let G be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic p. Assume that p is good for G. In this note we classify all the spherical nilpotent G-orbits in the Lie algebra of G. The classification is the same as in the characteristic zero case obtained by D.I. Panyushev in 1994, [32]: for e a nilpotent element in the Lie algebra of G, the ...
متن کاملM ay 2 00 8 SPHERICAL NILPOTENT ORBITS IN POSITIVE CHARACTERISTIC
Let G be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic p. Assume that p is good for G. In this note we classify all the spherical nilpotent G-orbits in the Lie algebra of G. The classification is the same as in the characteristic zero case obtained by D.I. Panyushev in 1994, [32]: for e a nilpotent element in the Lie algebra of G, the ...
متن کامل